Not Gödel's Incompleteness theorem, but an explanation that some links still lead to nowhere because this blog is still in the process of being moved from Mimble Wimble.

For completeness, while we are on the topic of Austrian mathematician, Kurt Gödel, his famous theorems state that:

"For any consistent formal, computably enumerable theory that proves basic arithmetical truths, an arithmetical statement that is true, but not provable in the theory, can be constructed. That is, any effectively generated theory capable of expressing elementary arithmetic cannot be both consistent and complete."


"For any formal recursively enumerable (i.e. effectively generated) theory T including basic arithmetical truths and also certain truths about formal provability, T includes a statement of its own consistency if and only if T is inconsistent."

No comments: